Making OpenlID + OAuth
Simpler than the Sum of its Parts

Some early ideas we're excited about

Joseph Smarr (jsmarr@google.com)
OpenlD Technology Summit
April 6, 2010

Context: "l like hybrid; make it easier!”

e Good news: Combining OpenlD and OAuth ("nybrid")
makes onboarding more valuable and user-friendly
o Single consent page for AuthN and AuthZ
o Matches user and site expectations for rich integration
o Sites like ability to make developers pre-register (TOS)

e Bad news: Both protocols are challenging to implement on
their own; their composition is even harder / more confusing
o RPs must do crypto (assertion validation, RPC signing)
o Most complexity is server-side, and thus cannot be
simplified by offering drop-in JavaScript libraries
o RPs must handle discovery and related logic to know
who to talk to and to avoid security holes

ldea: Could identity be part of OAuth?

e Evolution from OAuth 1.0 to WRAP/2.0 reflects similar goals
of developer simplicity (signing requests --> bearer tokens)
e Vendor-specific hybrid protocols have an "identity RPC"
o (twitter: users/show, facebook: users.getinfo, etc.)
e Federated challenges:

o Who do
o How do
o How do

RPs talk to when requesting user identity?
RPs verify identity assertion from OPs?

RPs ensure OPs' assertions are authoritative?

o How can we standardize user identifiers + profile data”

An "EasyHybrid" protocol: core ideas

e Use /.well-known/auth etc. URLs to simplify discovery
e RPs can make "identity RPC" after swapping OAuth
verification code for refresh/access tokens
o Response contains OP-local stable identifier (via PoCo)
o Returned token has RP-audience baked in
e RPs can use (OP-domain, identifier) as database key for
storing local/private user data
o OPs are authoritative for their own local identifiers
o Server-side RPC ensures response came from OP
o RP-audience prevents reusing tokens across RPs
e RPs can use (OP-domain, access_token) as session cookie
o On subsequent RPCs, RP includes its RP-audience
o Can do this on every pageview, or cache in session

Browser

grant Client access to
Protected Resource

Client Resource

Protected

verifier
-af
verifier - verifier -
< access token - access token
access token
(e.g., in cookie) GetUserlnfo call
— = w/ access token >
. user info
< user data from Client -
......... AP| call w/ access token > GetUserlnfo call

data

w/ access token

=

user info
-

Authorization
Server

not necessary

’/ In JS profile

outsource

session handling
and auth to AS
(RPC optional)

J

Browser or
Client accesses

Protected
Resource

What are we giving up for simplicity?

e Backwards-compatibility with OpenlID 2.0
e Use /.well-known/auth for OP hybrid consent URL
o Removes pre-checkid_* discovery
e OPs can only assert identities for their own domain
o Removes post-id_res discovery
o Eliminates security risk of cross-domain assertions
e RPs must make RPC to retrieve/validate identity assertion
o Removes association and validation complexity
o Have to make an RPC anyway to get access token
e Asserted identities are no longer URLs
o But they weren't really anyway with major OP impls
o Could use webfinger/etc for (domain, id) --> URL
e OAuth tokens are opaque (need RPC to get info anyway)
e SREG/AX
o Move it all to GetUserInfo API, which returns PoCo data

EasyHybrid: Open questions

e Handling unregistered consumers / RPs?
o Use anonymous/anonymous and then upgrade?
e Will we need to add static validation option back for
performance reasons?
o If so, how/when?
e \What about hosted/out-sourced OP solutions
o Which domain are identities asserted for?
o What happens when OP wants to change providers?
e \What about OpenlID delegation?
o Solve via /.well-known/auth redirect to OP?
e Backwards compatibility with existing OpenID URLs?
o Just return them in GetUserInfo output?

